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Recent interest in solutions of the static and dynamic epidemic models has
led us to reconsider some features of the critical exponents of these models.
In particular, our starting point is that the known values of such exponents
take different values depending on dimensionality d, for dynamic
epidemics, depending also on the looped nature of the chain, but the
universality is regained for d4 1. According to this superuniversality
property for d4 1, we could predict that the critical exponents � and � for
dynamic epidemics on a square lattice should be 43/18 and 4/3, respectively.
Furthermore, from numerical results in literature, we predict the critical
exponents for the Potts model in three dimensions and the percolation
exponents (q¼ 1) for d¼ 1, 2, 3, 4, 5 and d� 6. Other areas of relevance
beyond that in the title embrace conduction in heterogeneous media as well
as a description of the spreading of a fluid in a medium possessing mobile
impurities.

Keywords: polymer growth; solutions; dynamic and static epidemics;
critical exponents

There has been considerable interest over the past decade or so in the so-called
dynamic epidemic model [1,2]. While our specific interest is expressed in the title of
this article, as concerning specifically the polymer growth in solution, we refer in our
concluding comments to two other relevant areas which are also of current interest to
our own studies. Our prime focus further is that of critical exponents, following the
conjectured solution by one of us [3] on the 3D Ising model, to which we return
briefly below.

As a little further background, it is important to note that Vandewalle and
Ausloos [1] presented an exact solution of such a dynamic epidemic model referred to
above, using the ‘growth–transfer-matrix’ method for a variety of chains and trees
containing loops. In the subsequent work of Ivanova [2], the dynamic epidemic
model has been solved exactly on chains and a Bethe tree, all of which are decorated
with either consecutive hexagon or tetrahedron loops. Earlier background material
can be consulted in the review by Isichenko [4] which covers percolation, statistical
topography as well as transport in random media. In the context of percolation, it is
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noteworthy that, from table III of Isichenko’s [4] review, percolation critical

exponents are compared for d¼ 2 and d¼ 3. From that table, it can be seen that such

percolation exponents for d¼ 2 lattices numerically vary in certain ranges: �¼ 0.138–

0.15, �¼ 2.38�2.43, �¼ 1.33–1.35, �¼ 1.10–1.32, etc. However, the exact values are

given in [4]: �¼�2/3, �¼ 5/36, �¼ 43/18, �¼ 91/5, �¼ 4/3, �¼ 5/24, �¼ 1.25,

	¼ (2�d��)/(�d��)¼ 187/91 and dc¼ d��/�¼ 91/48. It is to be noted at this point

that the exact values for 2D are derived from conjectured results for the extended

Potts model and magnetic eigenvalue is given by Pearson [5]. If one put x¼�2/3 into

Equation (7) of Pearson’s [5] article for the critical exponents, one can reproduce the

exact values given above.
The exact values of the critical exponents for 2D Potts model were conjectured

independently by Pearson [5] and Nienhuis et al. [6]. These predicted critical

exponents are supported by the exact values of Ising model (q¼ 2) [7], hard hexagon

lattice gas (q¼ 3) [8,9] and Baxter–Wu model (q¼ 4) [10–13]. These exact results led

firm support to the correctness of the conjectures, which are compared with various

numerical means in table VI of Wu’s [14] review. The Potts model with q¼ 1

corresponds to the percolation model, according to equation (2) of Pearson’s article

[5], one has x¼�2/3 for the critical side, while q¼ 2 is for an Ising model with

x¼�1/2 on the critical side. The solution of x¼ 2/3 or 1/2 corresponds to

multicritical side for q¼ 1 or 2. In table V of Wu’s [14] review, critical exponents

conjectured for the 2D Potts model were tabulated, which are shown in this article as

Table 1. Note that the clerical errors (yh for q¼ 1 and � for q¼ 4) in Wu’s [14] Table

V have been corrected. According to figure 2 in [14] and also figure 1 in [15], there is

a critical value qc (d) beyond which the transition is mean-field like, while it is of first

order for q4 2 and second order for q� 2. For two dimensions (2Ds), the transition

becomes the first order for q4 4, making the values for q¼1 in Table 1

inappropriate. Nevertheless, for a complete comparison, we still list those values

obtained by extrapolation of the data in table I of den Nijs’ article [16], and by

assuming a continuous transition for q¼1.
As to the percolation critical exponents for dimensionality d¼ 3, Isichenko lists in

table III of [4] the values �¼� 0.64, �¼ 0.39�0.454, �¼ 1.63�1.91, �¼ 4.81,

�¼ 0.82�0.94, �¼ 1.4�2.46, 	¼ 2.19 and dc¼ 2.484. Therefore, we can predict that

the critical exponents for dynamic epidemics on 3D lattices should be close to the

numerical results quoted in Isichenko’s [4] review. Furthermore, in table 4.2 of [17],

Hansen quotes critical exponents for percolation in 2D as already given in this

article, while those in 3D are �¼ 0.44, �¼ 1.76, �¼ 0.88, 	¼ 2.2 and dc¼ 2.5. These

are indeed very close to the values tabulated by Isichenko [4].

Table 1. Critical exponents for the Potts model in 2D.

q yt yh � � � � � �

0 0 2 �1 1/6 1 1 0 1

1 3/4 91/48 �2/3 5/36 43/18 91/5 5/24 4/3
2 1 15/8 0 1/8 7/4 15 1/4 1
3 6/5 28/15 1/3 1/9 13/9 14 4/15 5/6
4 3/2 15/8 2/3 1/12 7/6 15 1/4 2/3
1 2 2 1 0 1 1 0 1/2
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It is to be understood that because the looped character of 2D and 3D lattices is

not an important factor for the critical exponents corresponding to the dynamic

epidemic model, and also because of the superuniversality property for d4 1, the

results for percolation critical exponents in other physical systems can be utilised for

understanding the critical behaviour of the dynamic epidemics. It would be of

considerable interest if one could find the exact solution for percolation critical

exponents on the 3D lattices. However, it is more difficult to construct the relation

for critical exponents of the 3D Potts model, since a first-order phase transition may

exist in 3D with q� 3. In figure 2 of [14], the black circle indicates the assumed first-

order transition for d¼ 3, q¼ 3. Nienhuis et al. [18] studied q-state Potts model in

general dimension and concluded from calculations of renormalisation group for

dimensions 1.58, 2 and 2.32 that the three-state Potts model in 3D undergoes a first-

order phase transition. However, there has been some argument predicting a

continuous transition for q¼ 3, d¼ 3 (for instance, [19]). It is thought that even the

transition for d¼ 3, q¼ 3 is of first order, which is very weak (close to the border) so

that it could be treated as a second-order phase transition for understanding the

critical behaviour. From the numerical results in table 1 of [19] and table III of [4],

one can predict a set of critical exponents for d¼ 3, q¼ 3, under the assumption of

the existence of a continuous transition. On the other hand, in consideration of the

numerical results for d¼ 3, q¼ 1 [17], one can also predict the critical exponents for

d¼ 3, q¼ 1. The results are predicted based on the following: (1) we assume that the

thermal exponent, yt, and the magnetic exponent, yh, are related to dimensions,

because in 2D, yt¼ 0, yh¼ 2 for q¼ 0, while yt¼ 2, yh¼ 2 for q¼1. Thus, we have

yt¼ 0, yh¼ 3 for q¼ 0, while yt¼ 3, yh¼ 3 for q¼1 for the 3D Potts model. In the

latter case, we disregard the existence of the first-order phase transition for q¼1.

(2) We assume that all the critical exponents for the 3D Potts model are simple

fractions or integers. From the numerical results in table 1 of [19], one immediately

obtains �¼ 1/2, �¼ 1/4 �¼ 1 and �¼ 5 for q¼ 3. From table 4.2 of [17], one obtains

�¼ 11/24, �¼ 7/4, �¼ 8/9 for q¼ 1. These critical exponents and others obtained by

the scaling laws are consistent with the numerical data in table III of [4] and also in

table III of [20].
These predicted results are listed in Table 2 for the 3D Potts model, together with

the conjectured solution of ZDZ [3] for the 3D Ising model (d¼ 3, q¼ 2). Here

�¼ 1/2 for d¼ 3, q¼ 0 is derived by extrapolation, since it cannot be obtained

directly from the scaling laws. Comparing the values in Tables 1 and 2, we find the

following laws: (1) for both 2D and 3D, the thermal exponent yt increases from 0 for

q¼ 0 to the value d for q¼1, while the magnetic exponent yh decreases from the

Table 2. Critical exponents for the Potts model in 3D.

q yt yh � � � � � �

0 0 3 �1 1/2 1 1 �1 1

1 9/8 159/64 �2/3 11/24 7/4 53/11 1/32 8/9
2 3/2 39/16 0 3/8 5/4 13/3 1/8 2/3
3 2 5/2 1/2 1/4 1 5 0 1/2
1 3 3 1 0 1 1 �1 1/3
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value d for q¼ 0 to a minimum and then increases back to the value d for q¼1. (2)

The critical exponents � for the Potts models in 2D and 3D are exactly the same for

the same q value if q� 2. As q varies from 0 to 1, the critical exponent � increases

from �1 to 1. (3) With increasing q from 0 to 1, the critical exponent �
decreases from 1/6 (or 1/2) to 0 for 2D (or 3D). Meanwhile, the critical exponent

� decreases from1 to 1 for both 2D and 3D, the critical exponent � decreases from
infinite to a minimum and then turns back to infinite, the critical exponent �
increases from 0 for 2D (or �1 for 3D) to a maximum and then decreases to 0 (or �1

for 3D), the critical exponent � decreases from infinite to the value 1/d for both 2D

and 3D. Of course, it should be emphasised that due to the existence of the first-order

phase transition, the values for q¼1 in Table 1 and for q¼ 3 and1 in Table 2 are

listed only for better understanding the tendency of variation of the critical

exponents. Because there is a superuniversality for d4 1 for the critical exponents,

we suggest that the values in Table 2 for d¼ 3, q¼ 1 (i.e. the 3D percolation model)

can be used for studying the critical behaviour of static and dynamic epidemics in 3D

lattices.
The percolation exponents listed in table II of [21] are important for

understanding, at a deeper level, the critical behaviours of the q¼ 1 Potts model

for different dimensions. From that table, we predict all the percolation exponents

for d¼ 2, 3, 4, 5 and d� 6, also based on an assumption that all the percolation

exponents for the Potts model are simple fractions or integers. The predicted results

are listed in Table 3 for the percolation exponents for d¼ 1, 2, 3, 4, 5 and d� 6. These

values agree with Appendix 1, table of critical exponents, in [22] and also the mean-

field values obtained exactly for a Bethe lattice by Reich and Leath [23] and figure 8

of [24] (and Ref. [43] therein, i.e. [25]). The values in Table 3 for q¼ 1, d¼ 2 and 3 are

already given in Tables 1 and 2, respectively. It is interesting to note that the

percolation exponent � is equal to �2/3 for 15 d� 4, while the percolation exponent

� equals 0 for d� 4. The percolation exponent � can be written as 48/36, 32/36, 24/36,

20/36 and 18/36 for d¼ 2, 3, 4, 5 and d� 6, respectively. The differences between the

percolation exponents � of these neighbouring dimensions are 16/36, 8/36, 4/36 and

2/36, which form a geometric series. From this fact, we can derive the relations for

the percolation exponents �: 3�3d� �2d� 2�4d¼ 0, 3�4d� �3d� 2�5d¼ 0, 3�5d�
�4d� 2�6d¼ 0. But, the percolation exponent �¼ 1/2 for d� 6 disagrees with static

exponent �¼ 1 for Bethe lattice (d¼1) of [1,2]. According to [15,16], there are three

known exact points (q, d )¼ (1, 6), (2, 4), (4, 2). For q¼ 1 and q4 6, the percolation

exponents should take the same values as (q, d )¼ (1, 6). The percolation exponents

Table 3. Percolation exponents (q¼ 1) for d¼ 1, 2, 3, 4, 5 and d� 6.

d yt yh � � � � � �

1 1 1 1 0 1 1 1 1
2 3/4 91/48 �2/3 5/36 43/18 91/5 5/24 4/3
3 9/8 159/64 �2/3 11/24 7/4 53/11 1/32 8/9
4 3/2 3 �2/3 2/3 4/3 3 0 2/3
5 9/5 7/2 �7/9 5/6 10/9 7/3 0 5/9
6 2 4 �1 1 1 2 0 1/2
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for high dimensions should be the same as the mean-field (Bethe lattice) values
[21–25], as proved in [26].

We wish to conclude this article with three fairly brief sections, the first of which
will be concerned with the influence of loops. In this context, we note that Ivanova
[2] studied static and dynamic epidemic models on chains and trees with 2D and 3D
loops. From table 1 of [2], the critical exponents for static epidemics on chains are
�¼ �¼ 1, but those for the dynamic epidemics are �¼ �¼ 3, which agree with the
findings of Vandewalle and Ausloos [1]. This clearly shows that for d¼ 1, the critical
exponents for static epidemics differ from those of the dynamic epidemic model, and
that the chains with squares, triangles, hexagons and tetrahedrons have the same
critical exponents. For static epidemics on a tree with tetrahedrons, the critical
exponents have the same values as those given by Vandewalle and Ausloos [1] (tree
with squares and triangles): �¼ �¼ 1 for both static and dynamic epidemic models.
The major conclusion here is that universality is lacking for the dynamic epidemic
model on a 1D lattice, but on trees the critical exponents are unaffected by the
introduction of a dynamic interaction and loops, and there is a superuniversal
for d4 1.

Our second concluding comment concerns the critical exponents for the 2D and
3D Potts models for different states q and also the percolation exponents (q¼ 1) for
d¼ 1, 2, 3, 4, 5 and d� 6. From the numerical results in literature, we predict the
critical exponents for the 3D Potts models with different q and also the percolation
exponents (q¼ 1) for different dimensions. As to future studies, we believe it would
be of considerable interest if one could understand the discrepancy between the
mean-field percolation exponent �¼ 1/2 for d� 6 [21–25] and static exponent �¼ 1
for the Bethe lattice (d¼1) of [1,2].

The very brief concluding comment of this article concerns the relevance to other
areas than polymer growth in solution stressed in the title. These also embrace
electrical conduction in heterogeneous media, as well as describing the spreading of a
fluid in a medium possessing mobile impurities.
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